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Abstract—A Permanent Magnet Synchronous Generator is
chosen as a case study for this comparison. A continous model
with a discrete integrator is shown to be the best solution for the
discretization of the nonlinear model. Then, the Kalman Filter
(KF), the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter are compared. The results are presented and it
is shown that the EKF is the best suited for this application.
Moreover, a discussion regarding the behaviour of the filters
follows, where all are shown to act like proportional controllers.

Index Terms—Nonlinear Model, Discretization, Kalman Filter,
Extended Kalman Filter, Unscented Kalman Filter

I. INTRODUCTION

State estimators are one of the two possible approaches
to assure sensor redundancy, the other being state observers.
This redundancy is critical for the monitoring of sensors and
different equipments, and for constructing residuals which may
be later used in fault diagnosis. The purpose of this paper is
to lay a foundation for the latter.

State observers and estimators are ideal candidates for
software sensors. The main difference between them is that
the latter considers the statistic properties of the process. State
estimators use the covariance matrices of the states, the process
and the measurement noises. They also do not require a priori
knowledge of the process uncertainties or the impact of faults.
They can also be more insensitive to noises.

The best-known state estimator is the Kalman Filter (KF).
It is an optimal estimator for linear systems and is widely
used. The Extended Kalman Filter (EKF) is the first nonlinear
extension of the classical KF. It is widely used in localization
and navigation, being the de facto standard. The Unscented
Kalman Filter (UKF) is a further nonlinear extension of the
Kalman Filter. It is used in military and aeronautic appli-
cations, as it can have superior performance to the EKF,
depending on the application [1].

The objective of this paper is to study the differences
between these three state estimators. The selected case study
is the Permanent Magnet Synchronous Generator (PMSG).
These are used in direct drive wind turbines [2], and their
motor counterparts are widely used in hybrid electric vehicles
[3]. Because the mathematical model is the same, and their
construction is similar, the results obtained in this paper can
be extended to motors.

The contribution of this paper is the comparison between
the three different state observers in the case of the PMSG
and the discussion about the behaviour of the KF and EKF,
when estimating the states of a process.

This paper is organized as follows: the model of the PMSG
will be presented in Section II. The different discretization
methods will be shown and compared in Section III. The
algorithms of the KF, EKF and UKF will be presented in
Section IV. The obtained results will be shown in Section
V, and they will be discussed. The conclusions and the
perspectives will close this paper.

II. THE MODEL OF THE PERMANENT MAGNET
SYNCHRONOUS GENERATOR

The dynamic model of a surface mounted PMSG is [4]

İd(t) =
Vd(t)−RdId(t) + npωm(t)LqIq(t)

Ld

İq(t) =
Vq(t)−RqIq(t)− npωm(t)LdId(t)

Lq
−

npωm(t)φ

Lq

(1)

where Id, Iq are the currents (in A), Vd, Vq are the voltages (in
V), obtained using through the Park Transform. Rd, Rq are the
stator resistances (in Ω) and Ld, Lq are the inductances (in H).
ωm is the angular speed of the rotor shaft (in rpm), φ is flux
linkage between the rotor and the stator (in Wb) and nP is
the number of pole pairs. For simplicity, it can be considered
that Ld ≈ Lq = Ls and Rd ≈ Rq = Rs where Ls and Rs

denote the stator inductance (in H) and resistance (in Ω) [5].
The states are the currents and the inputs are the voltages and
the angular velocity of the shaft.

The model is nonlinear, as it contains the product between
a state and an input.

The model of the generator is continuous. The goal is to
study the difference between the three filters in a discrete
simulation, to mimic the behaviour of the algorithms running
on a microcontroller. As a microcontroller is a discrete system,
the model must be discretized.
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III. DISCRETIZATION

It is difficult to discretize a nonlinear function. So, the most
appealing option is to use the Taylor Series Expansion (TSE)
to obtain a linear model [5][

idk+1

iqk+1

]
= Fk ∗

[
idk

iqk

]
+Gk ∗

[
Vdk

Vqk

]
+Hk (2)

where

Fk =

[
1− RsTs

Ls
TsnPωmk

−TsnPωmk
1− RsTs

Ls

]

Gk =

[
Ts

Ls
0

0 Ts

Ls

]
and Hk =

[
0

−TsnPωk

Ls
φ

]
and Ts is the sampling period.

However, any linearization might introduce errors in the
model. In [6] it is suggested to use the continuous model,
but with the following discrete integrator

xk = xk−1 + ẋ ∗ Ts;

where x is the state vector of the process..
However, this integrator differs from the one used in

Simulink, in the Power Systems Toolbox. There, when the
PMSG is simulated in discrete mode, the continuous model is
used but with a Forward Euler Integrator (FEI) [7]

yk = xk

xk+1 = xk + Ts ∗ uk

where y is the output of the integrator, x is its internal state
and u is its input, i.e. the derivative of the system states.

The simulation results are presented in Table I. The errors
obtained with the continuous integrator and the FEI are similar,
because the sampling period was chosen to be very small,
10−6. This is to prevent numerical instability in the simulation.
In Fig. III and Fig. III, the methods appear to return the same
results, but this is out of coincidence. The simulation was
checked, but the same results were obtained. Although Fig.
III and III are identical, they show that the discrete integrator
behaves like the continuous one, for the chosen sampling
period (10−6 s). All the simulations were done in Matlab,
Simulink, using the Simscape/Power Systems toolbox.
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Fig. 1. The continuous model with a continuous integrator
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Fig. 2. The continuous model with the discrete FEI
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Fig. 3. The continuous model with the discrete integrator from [6]

A small error appears for the continuous model with a
continuous integrator because of how Simulink compiles the
schematic. Any collection of Power Systems blocks is approx-
imated by a state space model [7].
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Fig. 4. The linearized model

TABLE I
COMPARISON OF THE DISCRETIZATION METHODS

Model Integrator type Order of error
Continuous Continuous ≈ 10−13

Continuous Discrete - FEI ≈ 10−13

Continous Discrete - from [6] ≈ 4

Linearised N/A ≈ 4
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IV. THE STATE ESTIMATORS

A. The Kalman Filter

Although the linear model from (2) introduces significant
modelling errors, it would be interesting to see if a KF,
which integrates this model, would achieve better results. The
Kalman Filter uses a linear model of the form

x̂k+1 = Ak ∗ x̂k +Bk ∗ uk
ŷk = C ∗ x̂k

(3)

where x ∈ Rnx are the states of the process. u ∈ Rnu are
the inputs and y ∈ Rny are the outputs of the process. A ∈
Rnx∗nx is the state matrix, B ∈ Rnx∗nu is the input matrix and
C ∈ Rny∗nx is the output matrix. The number of states is nx,
the number of inputs is nu and the number of measurements
is ny . The sampling time is k. The ”ˆ” denotes an estimation.

The model from (2) can be put into this form by combining
the matrices G and H and using a vector with three elements
for the inputs

[
idk+1

iqk+1

]
= Ak ∗

[
idk

iqk

]
+Bk ∗

Vdk

Vqk
φ

 (4)

where

Ak = Fk =

[
1− RsTs

Ls
TsnPωk

−TsnPωk 1− RsTs

Ls

]

Bk =

[
Ts

Ls
0 0

0 Ts

Ls
−TsnPωk

Ls

]

C =

[
1 0

0 1

]
Then, the classical KF algorithm can be used [8]

• Prediction phase

P̂k = AkP̂
∗
kA

T
k +Qk; (5)

• Update phase

Kk = P̂kC
T (CP̂kC

T +Rk)−1 (6)

x̂∗k+1 = x̂k +Kk(yk − Cx̂k) (7)

P̂ ∗k = (I −KkC)P̂k (8)

where P ∈ Rnx∗nx is the state covariance matrix, Q ∈ Rnx∗nx

and R ∈ Rny∗ny are the covariance matrices of the process
and the measurement noises. K ∈ Rnx∗ny is the Kalman gain
and y ∈ Rny are the measurements acquired from the process.
The ”∗” denotes the corrected estimation.

For all the presented state estimators, the covariance matri-
ces of the process and of the measurement noises are computed
as in [9].

B. The Extended Kalman Filter

The EKF also introduces a linearization, through the TSE
of the state function. This linearization is used to compute
the estimation of the state covariance matrix. However, these
linearizations are computed only around the current estimated
state, so the introduced error should be smaller.

The EKF uses the most general formulation of a nonlinear
model

x̂k+1 = f(x̂k, uk) (9)

yk = h(x̂k) (10)

where the state function is f : Rnx+nu → Rnx and the
measurement function is h : Rnx → Rny . For the EKF, the
model presented in (1) is already written in the required form.
The algorithm of the EKF is [10]
• Prediction phase

P̂k = FkP̂k−1F
T
k +Qk (11)

• Update phase

Kk = P̂kH
T
k (HkP̂kH

T
k +Rk)−1 (12)

x̂∗k = x̂k +Kk ∗ (yk − ŷk) (13)

P̂ ∗k = (I −KkHk)P̂k (14)

where F ∈ Rnx∗nx and H ∈ Rny∗nx are the Jacobians of the
state and measurement functions.

C. The Unscented Kalman Filter

The UKF uses the Unscented Transform (UT) [11] to ac-
count for the nonlinearity in the model. The current estimation
of the state is treated as the mean value of a probability
distribution, which has the same covariance as the states.
Depending on the implementation, either 2nx + 1 (for a full
order UT) or nx + 1 (for a reduced order UT) points are
chosen around the current mean. Each sigma point has a
certain weight associated with it. There are multiple ways to
choose the sigma points [12] [13].

The UKF uses the same model as in (1). The chosen (sigma)
points are propagated through the state function. The new
points are used to compute the new estimate of the mean,
i.e. the state, and its covariance. The new points are also
propagated through the measurement function, and their mean
is the estimated output of the system [12]. The next steps are
somewhat like the algorithm of the EKF.

The classical formulation of the UKF uses the square root
of the state covariance matrix to compute the sigma points.
To calculate the square root, the covariance matrix must be
at least positive semi-definite, which is not guaranteed by the
algorithm. A more stable version of the UKF, with a similar
degree of complexity is the Square Root UKF (SRUKF). Its
algorithm is [12]
• Choose the sigma points

– Select the weights of the sigma points [13]

Wi =
1−W0

2nx
(15)
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where W0 is chosen arbitrarily. A positive value
moves the sigma points further away from the previ-
ous estimate of the state, while a negative one brings
them closer to the previous average. However, the
weights must obey the condition

2nx∑
i=0

Wi = 1

– Compute the scaling parameters

ηi =

√
nx

1−Wi
(16)

– Choose the actual sigma points

χk−10|k = x̂∗k−1 (17)

χk−1i|k = x̂∗k−1 + ηiŜ
∗
k−1 (18)

where i = 1, nx

χk−1i|k = x̂∗k−1 − ηiŜ∗k−1 (19)

where i = nx + 1, 2nx
• Prediction phase

– Propagate the sigma points through the state function

χki|k = f(χk−1i|k) (20)

– Compute the new state estimation

x̂k =

2nx∑
i=0

Wiχki|k (21)

– Calculate and then update the square root of the state
covariance matrix

Ŝxk
= qr([

√
Wi(χki|k − x̂k)

√
Qk]) (22)

for i = 1, 2nx. ”qr” refers to the QR decomposition.

Ŝxk
= cholupdate(Sxk

, χk0|k − x̂k, sign(W0))
(23)

”cholupdate” is the rank 1 update. The rank update
formula is A1 = A± x ∗ xT where A is the matrix
obtained through a Cholesky factorization (QR in
this case) and x is a column vector. The sign to be
used in the update is the one of W0.

– Propagate the ”state” sigma points through the mea-
surement function

Yki
= h(χki|k) (24)

– Compute the new measurement estimation

ŷk =

2nx∑
i=0

WiYki (25)

• Update phase
– Compute and then update the square root of the

output covariance matrix

Ŝyk
= qr([

√
Wi(Yki − ŷk)

√
Rk]) (26)

for i = 1, 2nx

Ŝyk
= cholupdate(Syk

,Yk0 − ŷk, sign(W0)) (27)

– Calculate the covariance between the states and the
measurements

P̂xyk
=

2nx∑
i=0

Wi(χki|k − x̂k)(Yki
− ŷk)T (28)

– Find out the Kalman gain

Kk = (P̂xkyk
/ŜT

yk
)/Ŝyk

(29)

– Update the state estimation

x̂∗k = x̂k +Kk(yk − ŷk) (30)

– Correct the square root of the state covariance matrix

Sxk
= cholupdate(Sxk

,KkSŷk
,−1) (31)

V. RESULTS AND DISCUSSION

The results of the comparison are shown and Fig. 5 - 7 and
they are summarized in Table II.

The noises in the model are introduced by the way of
functioning of the Simscape/Power Systems toolbox. Although
different electrical components are modelled, they are not
simulated as in a Spice-type program. All the electrical blocks
and their connections are approximated by a state space model
[7]. To assure stability of this model, it is also advised to use
a fix-step solver with a very low sampling period.

The initial error of the SRUKF is not zero but is close to
10−4. However, in time it quickly converges to ≈ 10−13. This
is due to improper initialization, so the initial error is ignored.

As complexity, the KF and the EKF are the same. This is
because the Jacobian of the state function can be computed in
advance. It depends on ωmk

, but so does the state matrix of
the linear model. The SRUKF is by far the most complex.

The EKF is the fastest of the three filters, being closely
followed by the KF and then, by a large margin, the SRUKF.
The sigma point selection, the propagation of the 2nx + 1
points through the state function, the QR decompositions and
the Cholesky rank update slow it down considerably. The
slowdown of the KF might seem surprising. The linear model
requires the computation of more mathematical operations
- 27, in comparison with the nonlinear one - 21. As the
algorithms are the same in rest, the slowdown is due only
to the model.

All filter present oscillations. While the EKF and UKF
assure a very low modelling error, the KF is plagued by rather

TABLE II
COMPARISON OF THE STATE ESTIMATORS

Estimator Speed [% of EKF] Maximum error Complexity
KF 97.5 ≈ 194 Low

EKF 100 ≈ 10−13 Low
SRUKF 40 ≈ 10−13 High
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Fig. 5. Estimation error for the Kalman Filter
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Fig. 6. Estimation error for the Extended Kalman Filter

large spikes. To understand what is happening, two zoomed in
views of the estimation error of the KF are used: one before
the large spike (Fig. 8) and one after the large spike (Fig. 9).

Before the large spike, the error of the KF oscillates but
fairly slow, with certain pauses between each oscillation. In
time, due to accumulation of energy, large oscillations appear,
like the great spikes. After the large spike, the oscillation
frequency has increased, so all the energy causing the previous
large spikes is dissipated more quickly. A similar phenomenon
can be seen for the EKF and UKF, where very small oscillation
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Fig. 7. Estimation error for the Square Root Unscented Kalman Filter
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Fig. 8. Zoom in of the estimation error of the KF, before the large spike
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Fig. 9. Zoom in of the estimation error of the KF, after the large spike

are present, but with a very high frequency.
The cause of these oscillations is the approximation made

by Simulink. The electrical model of the wind turbine (which
includes a generator, a three level back to back converter,
and RL filter and a voltage source which represents the grid)
was made using the Simscape/PowerSystems toolbox. When
the Simulink diagram is compiled, all the electrical model
is approximated by a state space model. This introduces
differences between the model used in the state estimators
and the one used by Simulink. All filters try to compensate
for this difference in a similar manner as a P controller. As the
KF uses a linearized model which is even further away from
the one used by Simulink, it is harder for it to achieve and
maintain a null error. However, because both the state matrix
used by the KF and the Jacobian of the state function used
by the EKF depend on time, together with the intrinsic design
(varying amplification and state covariance matrix) of the two
filters, they manage to minimize the error. The UT transform
helps the SRUKF to minimize the error. The EKF and SRUKF,
as they use the nonlinear model, are better.

One might argue that both the EKF and the nonlinear model
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with a discrete integrator produce a similar estimation error (in
the order of 10−12 and 10−13), so the added complexity of
the EKF is useless. However, when noise is added, the utility
of the EKF is obvious (Fig. 10 and Fig. 11). Zero mean noise
with a variance of one was added to the measurement of the
voltages, which are used as inputs for the model.

VI. CONCLUSIONS AND PERSPECTIVES

A. Conclusions

In the first part of this paper, it was proven the necessity for
using a nonlinear model, in the case of a PMSG. A nonlinear
model has an insignificant estimation error, while a linear one
has an error with a amplitude around four. Moreover, it was
shown that using a discrete integrator with a continuous model
is the best approach.

Therefore, the resulting system is hybrid, having both a
continuous part (the model) and a discrete one (the state
estimator).

Three state estimators were compared: the KF, the EKF
and the SRUKF. However, the EKF is about 2.5 times faster
than the SRUKF and its error is in the order of 10−13 as the
SRUKF, which can be reasonably approximated by 0. The KF
could not compensate completely for the linearization of the
model. Because the new model required more mathematical
operations, it was also slower than the EKF.

The behavior of the different filters in the presence of the
uncertainties generated by the functioning of Simulink and
of the Simscape/PowerSystems toolbox was also examined. It
was shown that the behaviors of the filters are similar to a
proportional controller.

B. Perspectives

An interesting perspective would be the comparison of the
presented state estimators with state observers. The best known
nonlinear observers are the Nonlinear Unknown Input Ob-
server (NUIO) and the Sliding Mode Observer (SMO). While
Kalman-type filters are suitable to estimate the state, their
behavior is undefined in fault situations. The NUIO is designed
to consider the uncertainties in the process and the faults which
can occur, together with their impact on the states. The SMO
has very good robustness, which, theoretically, should ensure
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Fig. 10. Estimation error for the nonlinear model, in the presence of noise
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Fig. 11. Estimation error for the EKF, in the presence of noise

a good estimation. This comparison will be made in a future
paper, while also considering model uncertainties (using a
LPV model) and faults in the generator.
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